Digital image processing ppts, Best collection!

About this paper-presentations :(Digital image processing)

   Image Processing is processing of the image so as to reveal the inner details of the image for further investigation. With the advent of digital computers, Digital Image Processing has started revolutionizing the world with its diverse applications. The field of Image Processing continues, as it has since the early 1970’s, on a path of dynamic growth in terms of popular and scientific interest and number of commercial applications. Considering the advances in the last 30 years resulting in routine application of image processing to problems in medicine, entertainment, law enforcement, and many others.

The discipline of Digital Image Processing covers a vast area of scientific and engineering knowledge. Modern digital technology has made it possible to manipulate multi-dimensional signals with systems that range from simple digital circuits to advanced parallel computers. It’s built on a foundation of one- and two-dimensional signal processing theory and overlaps with such disciplines as Artificial Intelligence (Scene understanding), information theory (image coding), statistical pattern recognition (image classification), communication theory (image coding and transmission), and microelectronics (image sensors, image processing hardware).

Image processing has revolutionized in various fields. Examples include mapping internal organs in medicine using various scanning technologies (image reconstruction from projections), automatic fingerprint recognition (pattern recognition and image coding) and HDTV (video coding).

Collection of circuits with 555 IC for projects.


The mini project collection!

This pdf contains a collection of ten unique circuits with some explanation. all the circuits are constructed with the core idea of the 555 timer IC.

SAMPLE CONTENT:
Fig. 1, Dark Detector: It will sound an alarm if it gets too dark all over sudden. For example, this circuit could be used to notify when a lamp (or bulb) burns out. The detector used is a regular cadmium-sulphide Light Dependent Resistor or LDR, for short, to sense the absence of light and to operate a small speaker. The LDR enables the alarm when light falls below a certain level.

Fig. 2, Power Alarm: This circuit can be used as a audible 'Power-out Alarm'. It uses the 555 timer as an oscillator biased off by the presence of line-based DC voltage. When the line voltage fails, the bias is removed,and the tone will be heard in the speaker. R1 and C1 provide the DC bias that charges capacitor Ct to over 2/3voltage, thereby holding the timer output low (as you learned previously). Diode D1 provides DC bias to the timer-supply pin and, optionally, charges a rechargeable 9-volt battery across D2. And when the line power fails, DC is furnished to the timer through D2.
Fig. 3 Tilt Switch: Actually really a alarm circuit, it shows how to use a 555 timer and a small glass encapsulated mercury switch to indicate 'tilt'. The switch is mounted in its normal 'open' position, which allows the timer output to stay low, as established by C1 on startup. When S1 is disturbed, causing its contacts to be bridged by the mercury blob, the 555 latch is set to a high output level where it will stay even if the switch is returned to its starting position. The high output can be used to enable an alarm of the visual or the audible type. Switch S2 will silent the alarm and reset the latch. C1 is a ceramic 0.1uF (=100 nano-Farad) capacitor.


Water Level Indicator With Alarm : Project and circuits


Project: Water Level Indicator With Alarm

Here is a simple, versatile cir- cuit which indicates the level of water in a tank. This circuit produces alarm when water level is below the lowest level L1 and also when water just touches the highest level L12. The circuit is designed to display 12 different levels. However, these display levels can be increased or decreased depending upon the level resolution required. This can be done by increasing or decreasing the number of level detector metal strips (L1 to L12) and their associated components. In the circuit, diodes D1, D2 and D13 form half-wave rectifiers. The rectified output is filtered using capacitors C1 through C3 respectively. Initially, when water level is below strip L1, the mains supply frequency oscillations are not transferred to diode D1. Thus its output is low and LED1 does not glow. Also, since base voltage of transister T1 is low, it is in cut-off state and its collector voltage is high, which enables tone generating IC1 (UM66) and alarm is sounded. When water just touches level detector strip L1, the supply frequency oscillations are transferred to diode D1. It rectifies the supply voltage and a positive DC voltage develops across capacitor C1, which lights up LED1. At the same time base voltage for transistor T1 becomes high, which makes it forward biased and its collector voltage falls to near-ground potential. This disables IC1 (UM66) and alarm cannot be sounded. Depending upon quantity of water present in the tank, corresponding level indicating LEDs glow. It thus displays intermediate water levels in the tank in bar-graph style. When water in the tank just touches the highest level detector strip L12, the DC voltage is developed across capacitor C2. This enables tone generating IC1 (UM66) and alarm is again sounded. 
Related Posts Plugin for WordPress, Blogger...